In vitro characterization and cellular uptake profiles of TAMs-targeted lipid calcium carbonate nanoparticles for cancer immunotherapy

Xiaoyan Xu^{a,b#}, Renjie Li^{a,b#}, Runqi Dong^c, Yanfang Yang^{a,b}, Hongliang Wang^{a,b}, Jialing Cheng^{a,b}, Yuling Liu^{a,b*}, and Jun Ye^{a,b*}

^aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China

^bBeijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China

^cCapital Normal University High School, Beijing 100048, P.R. China

Correspondence: Professor Yuling Liu and Jun Ye, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, P.R. China, Tel (86)10-89285188, Fax (86)10-89285190, Email ylliu@imm.ac.cn (Yuling Liu) and yelinghao@imm.ac.cn (Jun Ye).

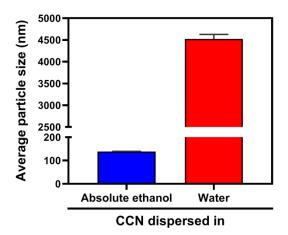


Figure S1 The average particle sizes of CCN dispersed in absolute ethanol and water.

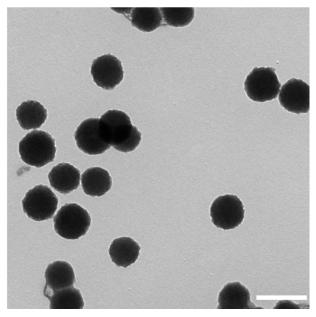
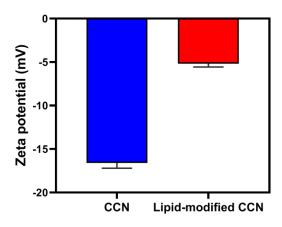
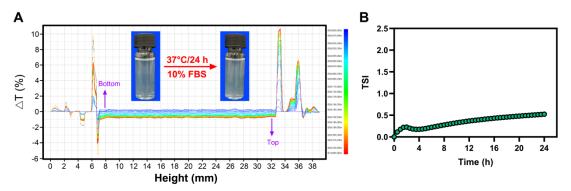




Figure S2 TEM image of CCN. Scale bar = 200 nm.

Figure S3 The zeta potential of CCN and lipid-modified CCN. Each value represents the mean \pm SD (n = 3).

Figure S4 In vitro colloidal stability of lipid-modified CCN. Variations of transmission profiles (Δ T) (A) and TSI (B) of lipid-modified CCN dispersed in 10% FBS at 37°C for 24 h.